EL MERCADO ELÉCTRICO

En España la compra y venta de energía eléctrica se realiza mediante un mercado eléctrico regulado por OMEL, (Operador del Mercado Ibérico de Energía - Polo Español, S.A.), de acuerdo a lo establecido en la ley 54/97 y 17/2007. Según esta empresa, el mercado eléctrico se define como "el conjunto de transacciones derivadas de la participación de los agentes del mercado en las sesiones de los mercados diario e intradiario y de la aplicación de los Procedimientos de Operación Técnica del sistema".

 Este es un artículo extraído del libro CENTRALES TERMOELÉCTRICAS DE BIOMASA

Descárgate el índice completo pinchando aquí

  Accede al libro pinchando aquí

foto de biomasa 12

Una explicación sencilla del funcionamiento del mercado eléctrico sería que los generadores ofertan la electricidad que van a producir al día siguiente, y las empresas ofertan la compra de esa electricidad. De esta forma se iguala la generación a la demanda, pues sólo producirán electricidad los generadores que hayan conseguido un comprador para su electricidad.

 

foto de biomasa 13

Antes de nada, hay que aclarar qué participantes pueden lanzar ofertas de compra y venta al "pool", que es donde los generadores y consumidores lanzan sus ofertas. Estos participantes son llamados "agentes de mercado", y son los siguientes: productores de electricidad, distribuidores, comercializadores y consumidores cualificados. También existen los llamados "agentes externos", que son las empresas o consumidores extranjeros que pueden comprar o vender electricidad a través de las conexiones internacionales.

Los distintos generadores de electricidad ofertan en el mercado diario la energía que pueden producir en cada hora del día siguiente. Por otra parte, los consumidores lanzan ofertas al mismo mercado, ofreciendo un precio por la energía que van a consumir. Los productores y consumidores pueden hacer estas ofertas divididas en un máximo de 25 tramos en cada hora, ofertando por ejemplo el mínimo técnico de generación a precio cero (para no tener que parar completamente) y el resto de producción en tramos crecientes. Estos precios serán distintos para cada productor y cada consumidor, en función de sus características y necesidades, y pueden ser distintos también para cada hora del día, porque hay mucha más necesidad de energía en las horas punta que de noche, y por consiguiente el precio será mayor en esas horas punta. 

foto de biomasa 14 

Hay productores que incluso ofrecen su energía a precio cero. Un ejemplo son las centrales nucleares, ya que el coste de parar y arrancar la instalación es tan grande que es rentable mantener la planta en marcha a sabiendas de que están perdiendo dinero es algunas horas. Otro caso es el de la hidráulica fluyente, en el que el agua va a circular igual se case o no la energía generada, por lo que cualquier ingreso que se obtenga se debe dar por bueno.

En casos en que aumenta de forma incontrolada la producción (por ejemplo por la entrada masiva de energía eólica cuando sopla mucho el viento) y la demanda es baja, puede suceder que sólo entren en la casación los productores que hicieron ofertas a precio cero. En este caso los generadores de régimen ordinario (como la nuclear) no cobran por la energía producida, mientras que los del régimen especial reciben lo mismo porque están bajo precio regulado (la diferencia entre el precio regulado y el precio de casación lo aporta la Comisión Nacional de la Energía).

Comparando las ofertas de venta de los productores y las ofertas de compra de los consumidores se calcula el punto de intersección (figura 5.3), que fija el precio marginal del mercado para cada hora del día. Éste será el precio que recibirán todos los generadores que han casado sus ofertas de venta (es decir, cuyas ofertas estaban por debajo del precio marginal resultante), y lo que tendrán que pagar los consumidores que hayan casado sus ofertas de adquisición (con ofertas de compra superiores al precio marginal). Este sistema tiene una peculiaridad, y es que todos los generadores cobran el precio marginal, que es el precio más alto de la casación. Esto resulta muy ventajoso para aquellas tecnologías que producen la electricidad a un precio menor, ya que reciben grandes beneficios. Otra opción sería dar a cada productor el precio ofertado, de forma que todos tendrían que ofertar a precios suficientemente altos para conseguir beneficios, pero muy ajustados para conseguir entrar en la casación. 

foto de biomasa 15

Una vez calculada la primera casación, se añaden los contratos bilaterales (que son los contratos suscritos entre un productor directamente con un consumidor, sin pasar por el mercado). Entonces hay evaluar la viabilidad del programa, teniendo en cuenta las capacidades de las líneas de transporte, las conexiones internacionales, y otros condicionantes. Después de un proceso de iteraciones se obtiene el "Programa Diario Viable Definitivo", que es el programa completo de generación, consumo y transporte del día siguiente. 

foto biomasa 16 

INDICE COMPLETO DEL LIBRO "CENTRALES TERMOELÉCTRICAS DE BIOMASA"

1 LA BIOMASA 

 1.1 QUÉ ES LA BIOMASA          
 1.2 LA BIOMASA COMO FUENTE ENERGÉTICA                                                    
 1.3 LA COMBUSTIÓN Y EL EFECTO INVERNADERO 
 1.4 LA PRODUCCIÓN MUNDIAL DE BIOMASA 
 1.5 APLICACIONES DE LA BIOMASA EN LAS INDUSTRIAS 
 1.6 LA IMPORTANCIA ECONÓMICA DE LA BIOMASA 
 1.7 EL PLAN DE ENERGÍAS RENOVABLES 2005-2010 
 1.8 VENTAJAS Y DESVENTAJAS EN EL USO DE BIOMASA 
 1.9 LA GENERACIÓN ELÉCTRICA A PARTIR DE BIOMASA 
 1.10 PLANTAS DE BIOMASA EN ESPAÑA 
             1.10.1 Plantas de biomasa en Andalucía 
             1.10.2 Resto de España 
 2 TIPOS DE BIOMASA 
 2.1 BIOMASA NATURAL 
 2.2 BIOMASA RESIDUAL 
             2.2.1 Residuos agrícolas 
             2.2.2 Residuos forestales 
             2.2.3 Residuos de industrias agrícolas y agroalimentarias 
             2.2.4 Residuos de industrias forestales 
             2.2.5 Residuos ganaderos 
             2.2.6 Residuos urbanos 
 2.3 EXCEDENTES AGRÍCOLAS 
 2.4 CULTIVOS ENERGÉTICOS 
             2.4.1 Qué son los cultivos energéticos 
             2.4.2 Características que deben tener los cultivos energéticos 
             2.4.3 Clasificación de los cultivos energéticos 
             2.4.4 Los cultivos energéticos en España 
             2.4.5 Ventajas e inconvenientes de los cultivos energéticos 
             2.4.6 Aspectos económicos a tener en cuenta 
             2.4.7 Aspectos medioambientales a tener en cuenta 
             2.4.8 La paulownia 
             2.4.9 El cardo 
             2.4.10 La planta de tabaco 
 3 PROCESOS DE TRANSFORMACIÓN DE LA BIOMASA 
 3.1 PROCESOS FÍSICOS 
 3.2 PROCESOS TERMOQUÍMICOS 
             3.2.1 Combustión 
             3.2.2 Gasificación 
             3.2.3 Pirolisis 
 3.3 PROCESOS BIOLÓGICOS 
             3.3.1 La fermentación alcohólica 
             3.3.2 La fermentación metánica 
 3.4 PROCESOS QUÍMICOS: TRANSESTERIFICACIÓN 
 4 LA COMBUSTIÓN 
 4.1 QUÉ ES LA COMBUSTIÓN 
 4.2 REACCIONES QUÍMICAS DEL PROCESO 
 4.3 PARÁMETROS CARACTERÍSTICOS DE LA BIOMASA 
 4.4 EL PODER CALORÍFICO DE LA BIOMASA 
             4.4.1 Poder calorífico superior e inferior 
             4.4.2 Poder calorífico de diversas biomasas 
 4.5 TIPOS DE COMBUSTIÓN 
             4.5.1. Combustión completa 
             4.5.2. Combustión incompleta 
             4.5.3. Combustión estequiométrica 
             4.5.4. Combustión con exceso de aire 
             4.5.5. Combustión con defecto de aire o rica 
 5 EL MERCADO ELÉCTRICO
 5.1 EL MERCADO ELÉCTRICO 
 5.2 LOS 6 MERCADOS INTRADIARIOS 
             5.2.1 Ofertas de venta en los mercados intradiarios 
             5.2.2 Ofertas de compra en los mercados intradiarios 
             5.2.3. Procesos de casación y resultados 
 5.3 LA OPERACIÓN DEL SISTEMA 
             5.3.1 Mercados de servicios de ajuste del sistema 
             5.3.2 Solución de restricciones técnicas 
             5.3.3 Servicios complementarios 
 5.4 EL MERCADO ELÉCTRICO Y LAS ENERGÍAS RENOVABLES 
             5.4.1 La venta a tarifa 
             5.4.2 La venta a mercado + prima 
             5.4.3 Contratos bilaterales 
             5.4.4 Los mercados intradiarios 
             5.4.5 Desvíos 
             5.4.6 Complementos 
             5.4.7 La retribución final 
 6 SITUACIÓN ACTUAL Y MARCO LEGISLATIVO 
 6.1 LEY 54/1997 
 6.2 LEY  17/2007 
 6.3 RD 1955/2000 
 6.4 RD 661/2007 
 6.5 RDL 6/2009 
 6.6 RD 1565/2010 
 6.7 RDL1/2008 SOBRE EVALUACIÓN DEL IMPACTO AMBIENTAL 
 7 LAS CENTRALES TERMOELÉCTRICAS DE BIOMASA
 7.1 DESCRIPCIÓN GENERAL DE UNA CENTRAL DE BIOMASA 
 7.2 MODOS DE FUNCIONAMIENTO HABITUALES 
             7.2.1 Funcionamiento en paralelo con la red 
             7.2.2 Funcionamiento en isla 
             7.2.3 Funcionamiento sin la central de generación 
 7.3 PARÁMETROS CARACTERÍSITICOS DE UNA P. DE BIOMASA 
 7.4 SISTEMAS QUE COMPONEN UNA PLANTA DE BIOMASA 
 8 PRETRATAMIENTO DE LA BIOMASA 
 8.1 ALMACENAMIENTO DE LA BIOMASA 
             8.1.1 Tipos de almacenes 
             8.1.2 Criterios de selección del tipo de almacenamiento 
             8.1.3 Controles a efectuar en el parque de biomasa 
 8.2 TRANSPORTE HASTA LA CALDERA 
 8.3 NECESIDAD DE LOS TRATAMIENTOS PREVIOS 
 8.4 EL SECADO 
 8.5 ASTILLADO 
 8.6 MOLIENDA 
 8.7 CRIBADO 
 8.8 PELLETS 

 8.9 ALMACENAMIENTO INTERMEDIO 

 8.10 PESAJE: EL CONTROL DE LA CANTIDAD INTRODUCIDA 
 8.11 DOSIFICACIÓN EN LA CALDERA 
 

9 LA CALDERA DE COMBUSTIÓN DE BIOMASA 

 9.1 LA CALDERA DE COMBUSTIÓN 
 9.2 FASES EN EL PROCESO DE COMBUSTIÓN DE BIOMASA 
 9.3 TIPOS DE CALDERA SEGÚN LA CIRCULACIÓN DE AGUA 
             9.3.1 Calderas pirotubulares 
             9.3.2 Calderas acuotubulares 
 9.4 TIPOS DE CALDERAS SEGÚN LA FORMA DE COMBUSTIÓN 
             9.4.1 Calderas de parrillas móviles 
             9.4.2 Calderas de lecho fluidizado 
             9.4.3 Calderas de quemador de suspensión 
             9.4.4 Comparación de tecnologías parrilla—lecho fluido 
 9.5 TIPOS DE CALDERAS SEGÚN LA PRESIÓN DEL HOGAR 
 9.6 PARÁMETROS CARACTERÍSTICOS DE CALDERAS DE BIOMASA 
 9.7 LA ENTRADA DE AIRE COMBUSTIBLE 
 9.8 LA ENTRADA DE COMBUSTIBLE 
 9.9 EL HOGAR. ZONA DE RADIACIÓN 
 9.10 EL SOBRECALENTADOR 
 9.11 EL EVAPORADOR 
 9.12 EL ECONOMIZADOR 
 9.13 SALIDA DE GASES 
             9.13.1 Separadores ciclónicos 
             9.13.2 Filtros de mangas 
             9.13.3 Electrofiltros 
             9.13.4 Sistema de monitorización continua de emisiones gaseosas
 9.14 SALIDA DE CENIZAS 
 9.15 PROBLEMAS EN CALDERAS DE BIOMASA 
 10 EL CICLO AGUA-VAPOR 
 10.1 EL CICLO RANKINE 
 10.2 LA FUNCIÓN DEL CICLO AGUA-VAPOR 
 10.3 EL ESQUEMA DE CICLO AGUA-VAPOR 
 10.4 EL CONDENSADOR 
 10.5 LAS BOMBAS DE CONDENSADO 
 10.6 PRECALENTADORES DE BAJA PRESIÓN 
 10.7 TANQUE DE AGUA DE ALIMENTACIÓN 
 10.8 BOMBAS DE AGUA DE ALIMENTACIÓN 
 10.9 PRECALENTADORES DE ALTA PRESIÓN 
 10.10 VÁLVULA DE BY-PASS DE ALTA PRESIÓN 
 11 LA TURBINA DE VAPOR 
 11.1 LA TURBINA DE VAPOR, UNA MÁQUINA EXPERIMENTADA 
 11.2 CLASIFICACIÓN DE LAS TURBINAS DE VAPOR 
             11.2.1 Según la transformación de e. potencial en rotación 
             11.2.2 Según la presión a la entrada de la turbina 
             11.2.3 Según la presión del vapor de salida 
             11.2.4 Según la dirección del flujo en el rotor 
             11.2.5 Según la presencia de tomas intermedias de vapor 
             11.2.6 Según su conexión mecánica con otras turbinas 
 11.3 PARTES PRINCIPALES DE UNA TURBINA DE VAPOR 
             11.3.1 Sistema de admisión 
             11.3.2 El rotor 
             11.3.3 La carcasa 
             11.3.4 Álabes 
             11.3.5 Cojinetes de apoyo, de bancada o radiales 
             11.3.6 Cojinete de empuje o axial 
             11.3.7 Sistema de lubricación 
             11.3.8 Sistema de extracción de vahos 
             11.3.9 Sistema de refrigeración de aceite 
             11.3.10 Sistema de aceite de control 
             11.3.11 Sistema de sellado de vapor 
             11.3.12 Virador 
 11.4 EL SISTEMA DE CONTROL 
 11.5 ELEMENTOS AUXILIARES DE LA TURBINA 
             11.5.1 Bancada 
             11.5.2 Nave de turbina 
             11.5.3 Puente grúa 
             11.5.4 Reductor 
 12 SISTEMAS ELÉCTRICOS DE ALTA Y BAJA TENSIÓN 
 12.1 EL GENERADOR ELÉCTRICO 
 12.2. LOS SISTEMAS DE ALTA Y MEDIA TENSIÓN 
             12.2.1 Transformador principal 
             12.2.2 Transformador de servicios auxiliares 
             12.2.3 Interruptor de máquina 
             12.2.4 Interruptor automático 
             12.2.5 Seccionadores de barras y línea 
             12.2.6 Barra de media tensión 
             12.2.7 Línea de evacuación 
             12.2.8 Protección contra rayos 
             12.2.9 Red de tierras 
             12.2.10 Transformadores tensión (TT) 
             12.2.11 Transformadores de intensidad (TI) 
             12.2.12 Protecciones 
 12.3 EL SISTEMA DE BAJA TENSIÓN 
 13 SISTEMAS AUXILIARES 
 13.1 SISTEMA DE REFRIGERACIÓN PRINCIPAL 
             13.1.1 Circuito abierto 
             13.1.2 Circuito semiabierto con torre de refrigeración 
             13.1.3 Circuito cerrado, con aerocondensador 
 13.2 SISTEMA DE REFRIGERACIÓN DE EQUIPOS 
 13.3 PLANTA DE TRATAMIENTO DE AGUA (PTA) 
 13.4 PLANTA DE TRATAMIENTO DE EFLUENTES 
 13.5 SISTEMA DE AIRE COMPRIMIDO

  13.6 SISTEMA CONTRAINCENDIOS

 

Novedades editoriales RENOVETEC

Para solicitar cualquiera de estos libros, llámanos al 91 126 37 66, envia un email a Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla. o pregunta en tu librería favorita (Casa del Libro, Diaz de Santos, El Corte Inglés, librerías universitarias o cualquier otra librería técnica)

 © RENOVETEC 2013. Prohibido copiar o reproducir textos o imágenes de esta página sin el consentimiento expreso y por escrito del titular de los derechos

 

 


Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla.

¿CONOCES RENOVEFREE MOBILE?

RENOVEFREE MOBILE es el software de gestión del mantenimiento desarrollado por RENOVETEC. 

Descubre todo lo que puede ofrecerte su nueva versión web haciendo click aquí

CENTRALES TERMOELÉCTRICAS DE BIOMASA

Nuevo libro RENOVETEC dedicado a las centrales eléctricas que producen energía a partir de biomasa.

libro plantas de biomasa

Un libro eminentemente técnico y práctico que analiza los principales equipos presentes en las plantas de biomasa, sus problemas, las opciones disponibles.. 

Más información

IMPLEMENTACIÓN DE RENOVEFREE EN UNA PLANTA DE BIOMASA

GUIA IRIM 2: ELABORACIÓN DE PLANES DE MANTENIMIENTO

Una Guía de carácter práctico, con la que el Ingeniero de Mantenimiento, siguiendo los pasos que se indican, debe ser capaz de desarrollar un plan de mantenimiento incluso aunque posea poca experiencia realizando este tipo de trabajo.

Más información

REVISTA IRIM: ESPECIAL RCM 2ª PARTE

El Instituto RENOVETEC de Ingeniería del Mantenimiento, IRIM, ha editado el número 6 de la revista IRIM. 

Puedes descargarte la revista de forma totalmente gratuita en formato pdf desde aquí.

Volver >